
Drug Discovery Today d Volume 27, Number 12 d December 2022 REVIEWS
Deep learning methods for molecular

N
O
TE

(G
R
EE

N
)

representation and property

prediction K

EY
Zhen Li a, Mingjian Jiang c, Shuang Wang d,
Shugang Zhang b,⇑

Zhen Li is an associate professor with
Qingdao University. His research interests
include graph convolution models, machine
learning, and bioinformatics. He is currently

focusing on deep learning methods for
a College of Computer Science and Technology, Qingdao University, Qingda
o 266071, China
b College of Computer Science and Technology, Ocean University of China, Qingdao 266100, China
c School of Information and Control Engineering, Qingdao University of Technology,
Qingdao 266033, China
d College of Computer Science and Technology, China University of Petroleum,
266580 Qingdao, China

computer-aided drug discovery.

Mingjian Jiang is a lecturer with Qingdao
University. His main research interests

include virtual screening, molecular design,

and drug–target affinity prediction.

Shuang Wang is currently a lecturer with the
China University of Petroleum (East China).
Her research interests mainly include deep
learning-based drug design, such as for
drug design, and molecular property and
drug–target affinity predictions.

Shugang Zhang is a lecturer with the Ocean
With advances in artificial intelligence (AI) methods, computer-
aided drug design (CADD) has developed rapidly in recent years.
Effective molecular representation and accurate property pre-
diction are crucial tasks in CADD workflows. In this review, we
summarize contemporary applications of deep learning (DL)
methods for molecular representation and property prediction.
We categorize DL methods according to the format of molecular
data (1D, 2D, and 3D). In addition, we discuss some common DL
models, such as ensemble learning and transfer learning, and
analyze the interpretability methods for these models. We also
highlight the challenges and opportunities of DL methods for
molecular representation and property prediction.
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Introduction
Molecular properties are important factors in many fields, includ-

ing chemistry, drug discovery, and healthcare, and are related to quantum mechan-
ics, physical chemistry, biophysics, physiology, and so on.1 Computer-aided
methods are able to predict molecular properties quickly, providing overviews of
the molecules of interest before specific experiments begin. Such approaches are
referred to as quantitative structure–activity relationship (QSAR) or quantitative
structure–property relationship (QSPR) models. Furthermore, with the development
of machine learning (ML) methods, the accuracy and speed of molecular property
prediction (MPP) have also improved, accelerating other related applications, such
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as drug–target affinity predictions2,3 and molecular synthesis pre-
dictions.4,5 In particular, DL methods, an important branch of
ML, have received significant attention.6 Such approaches allow
the more precise discovery of the relationships between a struc-
ture and its properties.

The first decision in MPP using DL models is how to represent
a molecule. The molecular formula is a common representation
for molecules (e.g., C30H35N7O4S represents imatinib mesylate);
however, such representation is difficult for DL models to predict
the properties of molecules because of the lack of structural infor-
mation. Therefore, a more advanced sequence-based representa-
tion, namely the Simplified Molecular-Input Line Entry System
(SMILES),7 was proposed and has become a popular representa-
tion of molecules. In a SMILES string, atoms and chemical bonds
are represented by letters and punctuation, respectively, and
branches are described using parentheses. In Fig. 1a, imatinib
FIGURE 1
1D, 2D, and 3D representations of imatinib mesylate (C30H35N7O4S). (a) For th
including Simplified Molecular-Input Line Entry System (SMILES), the extend
fingerprint, and some mathematical representation methods. (b) For the 2D r
matrices (i.e., the adjacent matrix and the feature matrix). The molecular image
imatinib mesylate. (c) Two 3D representation methods: a 3D molecular graph a
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mesylate is converted into a SMILES string. However, because a
SMILES string mgiht not correspond to a valid molecule, self-
referencing embedded strings (SELFIES)8 were proposed to solve
this problem, whereby each SELFIES string corresponds to a valid
molecule.

In addition, fingerprints are another type of sequence-based
molecular representation that incorporates molecular structure
information, such as extended connectivity fingerprints (ECFP)9

and molecular access system (MACCS)10 (Fig. 1). They are nor-
mally used as input for traditional ML methods11 or as the auxil-
iary input combined with other types of data.12 In recent years,
the mathematical representation of molecules, including topo-
logical and geometric models, has achieved enormous suc-
cess.13–21 Nguyen et al.22 used algebraic topology-based
representations to characterize molecules, and persistent homol-
ogy was introduced to enrich the topological representation.
Drug Discovery Today

e 1D representation, several representation forms are demonstrated here,
ed connectivity fingerprint (ECFP) and molecular access system (MACCS)
epresentation, the molecular graph can be presented in the form of two
on the right (generated by RDKit68) is another type of 2D representation for
nd a 3D molecular grid (generated by PyMOL116).



K
EY

N
O
TE

(G
R
EE

N
)

Drug Discovery Today d Volume 27, Number 12 d December 2022 KEYNOTE (GREEN)
MathDL23 combined differential geometry, algebraic graphs, and
algebraic topology to form rotational and translational invariant
molecular fingerprints. Based on persistent homology, Liu et al.24

developed a persistent spectral hypergraph model, in which per-
sistent attributes were used as fingerprints.

Although the SMILES string is simple and fast, it is still not
able to capture the spatial relationship between atoms compre-
hensively. As shown in Fig. 1, in the C = C5 benzene ring, five
carbon atoms are grouped into C5; however, different carbon
atoms have different relationships with other atoms and are
located at different places in the molecule. Furthermore, they
might correspond to different properties. Thus, using only
SMILES is not enough to predict certain properties.

The structural information embedded in the molecular 2D
data is helpful in MPP, which is divided into two types (molecu-
lar graph data and molecular image data; Fig. 1b). Graph data are
an efficient way to learn molecular representation. The atoms of
a molecule are regarded as nodes in a molecular graph, whereas
the chemical bonds are regarded as edges. With the development
of graph convolutional networks (GCNs),25,26 the information of
neighboring nodes can be gathered more directly and efficiently,
which is useful in capturing spatial relationships among atoms
within a molecule. At the same time, the molecular image,
obtained by converting the molecule into a pixel-based rasteriza-
tion image, is another 2D representation format for molecules,
with each pixel in the image representing a bond, atom, or blank
background. Given the development of DL methods in the image
field, researchers have attempted to transfer these methods to
molecular images for MPP.

The 3D structure provides themost detailed information about
a molecule. Analogous to 2D molecular data, there are two types
of 3Dmolecular data: 3Dmolecular graphs and 3Dmolecular grid
(Fig. 1c). The 3Dmolecular graph records the 3D locations of each
atom, and the 3D molecular grid is a special 3D image in which
the voxels in the grid indicate different elements or attributes of
molecular conformation through different methods.

In this review, we highlight DL models using for molecular
representation. We first introduce molecular representation and
property prediction methods and highlight newly emerging DL
methods, such as ensemble learning and transfer learning, which
have been used to solve some common problems in molecular
representation. We also present a brief overview of the inter-
pretability of DL models and highlight associated challenges
and future research avenues.
Sequence-based methods
SMILES is the most direct and simple way to depict a molecule. It
is similar to natural language, in which each atom is a word in
the sentence. Given rapid progress in the natural language pro-
cessing (NLP) area, NLP methods could be applied for the embed-
ding of a SMILES sequence.
Data augmentation methods
Inconsistency in SMILES has to be overcome before they can be
processed using DL models. For a molecule, there could be many
valid SMILES sequences depending on the SMILES grammar. A
starting atom and a traverse order might correspond to a
sequence; thus, we can choose any atom as the starting point
and any branch as the first one to go through. The canonical
SMILES ensures that each molecule has only one SMILES string
according to certain rules. However, various SMILES formats for
the same molecule could enhance the learning ability of the
DL model when non-canonical SMILES are used as inputs. This
is because non-canonical SMILES can also benefit DL models
by offering latent features associated with the grammar of
SMILES and chemical properties. Therefore, data augmentation
or enumeration is recommended to enlarge the coverage of
strings, thereby ensuring that the model is able to learn multiple
strings of a molecule.

Given that each molecule has different lengths, there are
fewer possible notations of short strings compared with long
strings. In Conv2S27, the SMILES strings were generated ran-
domly and continuously until LN/(L + 1) was < 1 %, where L
and N are the length and number of generated SMILES, respec-
tively. To overcome the problem of unbalanced data sets, mole-
cules with fewer SMILES strings are complemented by the
repetitive SMILES strings to ensure that all molecules have the
same number of SMILES strings. Kimber et al.28 conducted a com-
prehensive analysis of five different SMILES augmentation meth-
ods. They found that the augmentation method improved the
performance of the DL model, and the results achieved using
canonical SMILES were better than using single random SMILES.

Convolutional neural network models
Convolutional neural networks (CNNs) can be used for sequence
data processing. For example, the ConvS2S27 model converts
SMILES to an integer list and then adds the position embedding
to inform the model of the position of the corresponding letter.
Lim et al.29 also performed a character-level embedding of
SMILES, in which embedding vectors were generated for each let-
ter. A CNN layer with a multihead self-attention module was
introduced to process the input embedding, and two fully con-
nected layers were added to output the prediction. SMILES con-
volution fingerprints (SCFPs)30 were combined multiple atom
properties, including type, degree, charge, and chirality, to form
a feature vector of an atom. The SMILES sequence could be con-
verted into a matrix, the length of which was the maximum
length of the SMILES sequence. Two convolutional and pooling
layers with a subsequent global pooling layer were constructed to
extract the representation, and the large contribution of the cor-
responding filter indicated the important substructure by
backtracking.

Given that CNN-based methods require a fixed length of
input samples, the drug SMILES must be padded or truncated
before being sent into the network. Typically, the maximum or
average length of the SMILES strings in the data set can be cho-
sen as the fixed length of the model input samples. However,
both methods will result in data loss and introduction of noise,
one of the major problems of CNN-based methods.

Recurrent neural network models
Recurrent neural networks (RNNs) and variants, such as long
short-term memory (LSTM) and gated recurrent unit (GRU), are
widely used in NLP to process sequence data. To process molec-
ular sequence data, an accurate and robust RNN model for
www.drugdiscoverytoday.com 3
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SMILES sequence is crucial to extract features of molecules. Hou
et al.31 proposed a bidirectional-LSTM (Bi-LSTM) with a channel
and spatial attention network improved by Bayesian optimiza-
tion, which could specifically identify the prime factors in the
SMILES sequence. Nazarova et al.32 proposed two backpropaga-
tion methods of RNN and compared the performance of binary
and decimal representation of SMILES in polymer property pre-
diction. They found that the binary representation was more
accurate compared with the decimal one. The combination of
CNN and RNN can also improve the performance of representa-
tion. Li et al.33 converted each character in SMILES to a vector
using one-hot encoding, and a hybrid architecture of stacked
CNN and RNN layers was introduced for representation extrac-
tion. It was reported that CNN was able to improve the perfor-
mance of prediction compared with plain RNN models.

Although the RNN is suitable for sequence processing, using
only sequences and ignoring other information (e.g., chemical
context or molecular structures) is not a comprehensive way to
learn the molecular representation. In particular, the atomic rela-
tion, atomic group, as well as bond types within a molecule
might also be of relevance to the molecular property, which
could be introduced in certain ways to improve the performance.
Moreover, the interpretability of the model using sequence is still
defective. Given that the molecular branch is fused with the
main sequence, it is difficult for the RNN model to distinguish
the motif and branch without other more specific settings; thus,
the key atoms from the same functional group might be located
far away from each other. Even if the attention mechanism is
introduced, it only focuses on single letters or adjacent letters.

Substructure learning methods
Normally, the functional group is the key part of the molecule,
and the molecular properties and activities are highly related to
functional groups and substructures. However, the SMILES
sequence does not contain this type of information directly;
thus, methods focusing on the functional groups hiding in
SMILES have been developed. SMILES pair encoding34 learns a
vocabulary of high-frequency SMILES substrings and convert
SMILES according to the learned vocabulary, which can be fed
into DL models. Mol2Context-vec35 extracts the substructure
with the help of ECFP. The substructure comprises multiple
atoms, including a central atom and all atoms within a given
radius surrounding the central atom. Each substructure has its
own identifier. The substructure sequence is the input of a Bi-
LSTM, which captures the interactions between atomic groups.
Mol-BERT36 summarizes the vectors of each substructure as a
molecular representation for unsupervised learning and down-
stream tasks. S2DV37 defines a split character to retain the sub-
structure information, and a sliding window with predefined
size to process the sequence. Branch chains and double charac-
ters indicating a single atom are replaced by a single character,
and each branch is expanded and processed in the same way.
Each sliding window generates a vector to depict the relationship
between the compound and its substructure.

Sequence-based self-supervised learning methods
In recent years, self-supervised learning (SSL) has developed
rapidly. SSL can use a large amount of unlabeled data sets
4 www.drugdiscoverytoday.com
and design the pretext task to learn the intrinsic feature of
data, thereby reducing the demand for labeled samples.38 Gen-
erally, sequence-based SSL models can be divided into con-
trastive and generative learning methods.39 The contrastive
learning method is to construct pseudo-label data to learn
the difference between the positive and negative samples,
whereas the generative method encodes the input to latent
features and decodes it to reconstruct the input, whereby the
latent features can then be used as the representation of the
input. From the data information perspective, the contrastive
learning method tries to find the interdata information,
whereas the generative learning method focuses on the intra-
data information.40

In the NLP area, the bidirectional encoder representation
from transformers (BERT)41 is a widely used SSL method to
learn the feature of words, in which a transformer comprises
an encoder and a decoder. BERT-like methods can be applied
in SMILES sequences to extract atom or molecular features
(Fig. 2a). MOL-BERT42 combines three tasks to generate the
molecular representation. The first is the masked language
model (MLM) used in BERT. The second one is the SMILES
equivalence method, which uses two SMILES sequences from
the same molecules as one class, and two SMILES sequences
of different molecules as the other class for training. The third
uses molecular chemical characteristics for prediction. All three
models are trained jointly to output the molecular representa-
tion. SMILES-BERT43 is also based on BERT, but only the MLM
has been retained and a self-attention layer has been intro-
duced to use the sequential information.

In addition to BERT-based methods, there are other generative
methods using the encoder and decoder architecture for molecu-
lar representation. Hu et al.44 used a GRU-based encoder-decoder
generative model to generate latent features of a fixed size to rep-
resent molecules from SMILES, and a CNNmodel was introduced
for downstream prediction tasks. The Molecular Prediction
Model Fine-Tuning (MolPMoFiT)45 used the language model to
predict the next word according to a sequence of words, which
could also extract features for downstream tasks.

The translation model used in NLP can also be implemented
in the SMILES sequence data (Fig. 2b). Sequence-to-sequence (se-
q2seq) is a popular tool containing an encoder and a decoder for
the translation task, the object of which is to convert a sequence
to another sequence. Similarly, the output of the encoder could
also be the representation for other tasks. When using the seq2-
seq method for SMILES, the main objective is to find two corre-
sponding sequences for training. Winter et al.46 proposed a
method for translating two semantically equivalent representa-
tions of molecular structures (i.e., SMILES and IUPAC name).
Transformer-CNN47 trained a transformer model to conduct a
SMILES canonicalization task, in which the input was non-
canonical SMILES and the output was the corresponding canon-
ical SMILES.

Thus, SSL is a promising method because of its ability to dis-
cover the inner features of input data without labels. For
sequence-based SSL methods, contrastive learning methods that
help to find the inter-relationships of SMILES strings are still
lacking, which is a future direction for molecular representation
research.
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FIGURE 2
Different types of self-supervised learning (SSL) method in Simplified Molecular-Input Line Entry System (SMILES). (a) Bidirectional encoder representation
from transformers (BERT)-based method. The SMILES sequence is used as input and some atoms are randomly masked. The language model is then trained
to predict these masked items for representation learning. (b) Translation model-based method. The model is trained to translate the input SMILES sequence
to another type of sequence. The latent feature encoded by the encoder is used as the molecular representation.
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Graph-based methods
Graphs are a more direct structure that can store and represent
most structural information. In the graph model, atoms are set
as nodes and bonds are set as edges, and each node has its own
feature. With the help of graph data, structural information
within molecules can be used by GCNs, which is designed for
non-Euclidean graph data. They are capable of capturing infor-
mation on the relationship between connected nodes. Generally,
there are two types of GCN: spatial convolution and spectral con-
volution. The former updates the feature of each node by gather-
ing information about its neighboring nodes using certain
message-passing rules in the spatial domain. The latter converts
the graph data into spectral domain by performing eigenvalue
decomposition on Laplacian matrices.

Spectral GCN models
We introduce the spectral GCN methods firstly. LanczosNet48

uses the Lanczos algorithm to build the low-rank approximations
of Laplacians for graph spectral convolution, which could be
used to exploit multiscale information and design learnable spec-
tral filters. Shang et al.49 proposed a consistent edge-aware multi-
view spectral GCN model with a new flexible spectral filter from
the Chebyshev approximation; the molecular graph was decom-
posed into multiple views of the graph according to the type of
edges, and a consistent edge-mapping method that learned the
attention weights of edges was used to ensure the edge
consistency.

Thus, there are fewer spectral methods than spatial methods
in molecular representation and property prediction. This is
because molecules with different atoms will produce graphs of
different sizes, whereas spectral GCN models can only handle
graphs of a fixed size. As a result, data alignment operations, such
as padding or truncation, are still needed when processing the
input graph data samples, which will impair the data integrity
and affect the final performance of the models.25.
Spatial GCN models
Spatial GCN models are more widely used in drug discovery and
MPP. Generally, spatial GCN models require two matrices as
inputs: an adjacent matrix and a feature matrix. The former indi-
cates the spatial interconnection of atoms within a molecule and
can be obtained from molecular graphs, and the latter is nor-
mally defined by different methods. DeepAtomicCharge50 uses
the message-passing neural network (MPNN) with skip connec-
tion to predict the atomic charge. AttentiveFP51 is another
molecular representation method derived from GCN, which
automatically learns nonlocal intramolecular interactions and
captures the hidden edges from specified tasks through an atten-
tion mechanism. Multiphysical GNN52 combines the scale-
specific graph neural network and the element-specific graph
neural network to capture various atomic interactions from dif-
ferent scales for multiphysical representations.

The edge is also regarded as an important element that should
be considered in the convolution process. Cross-dependent
graph neural networks53 consider atoms and bonds equally
important. Both atom-central and bond-central views are con-
structed, and a cross-dependent message-passing scheme is pro-
posed between the two views. TrimNet54 proposes a triplet-
attentive edge network to gather information through atom–

bond–atom arrangements to improve the extraction of edge
information. A pair of atoms along with the bond between them
are concatenated into a triplet, and the multi-head attention is
used to gather the message of a node from its neighboring nodes
and edges.

Directed graphs are a special type of graph that contain direc-
ted edges indicating the direction of message passing. Such prop-
erty is often used to handle the problem of oversmoothing,
which frequently occurs in graph-learning models. For example,
the Edge Memory Neural Network55 focuses on passing messages
of edges rather than nodes. Each edge owns two states corre-
sponding to two opposite directions; thus, each state is updated
www.drugdiscoverytoday.com 5
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based only on its upstream nodes, thereby avoiding the disap-
pearance of useful information brought by the oversmoothing
problem.

Tree-based methods
A graph can be transformed into a tree structure by selecting a
starting atom, which breaks the circle of the graph and provides
another view of it. Moreover, according to a breadth-first search
(BFS) or depth-first search (DFS) method, a tree can be converted
to a sequence of atoms using an RNN model for representation
learning.

Su et al.56 and Wang et al.57 both developed QSAR modeling
methods based on the molecular tree structure. The molecules
are encoded to signature descriptors, and the tree-structured long
short-term memory (Tree-LSTM), which is good at capturing
long-range dependencies, was used to depict molecular tree data
structures and correlate them to molecular properties.

Junction Tree58 decomposes the molecule into substructures
first, and then generates a tree-structured graph based on these
substructures. Although the Junction Tree was proposed for
molecular generation, the encoder part can be isolated for prop-
erty prediction. Inspired by this, Wang et al.59 proposed a multi-
channel tree-based molecular prediction method. A molecule is
transformed into a substructure-based graph, and a BFS method
is applied to traverse the graph to generate a tree structure. A
GRU-based neural network with attention mechanisms is then
applied to learn the molecular features at multiple levels.

However, because of the different traversing methods, such as
BFS or DFS, and different root atom selection methods, the tree
structure is not unique. Multiple structures of the generated
molecular tree will affect the generalization of the model. The
definition of the canonical structures is not robust and cannot
ensure that all property-related information, especially the con-
nection information, is comprehensively exhibited in the struc-
tures because transferring a graph to a tree will have to break
down one or more connections.

Graph-based self-supervised learning methods
Similar to the performance on sequence data, SSL methods also
achieved remarkable performance on graph data. Wu et al.40

defined another type of SSL method on graph data, the predictive
method, which designs prediction-based pretext tasks based on
self-generated labels.

In the contrastive learning method, how to construct positive
and negative samples is a crucial step. In this regard, MolCLR60

augmented the molecules in three ways: atom masking, bond
deletion, and subgraph removal. Samples from the same mole-
cule were denoted as positive pairs, and the others were denoted
as negative pairs for contrastive loss calculation. However,
MOCL61 argues that augmentation methods, such as node drop-
ping, edge perturbation, and subgraph extraction, will affect the
properties of the molecule and are not suitable for contrastive
learning. Instead, MOCL adopts a substructure substitution strat-
egy, whereby a substructure is replaced by a bioisostere that
shares similar properties. In the NLP domains, many features
are extracted at the word and sentence levels. These two levels
in NLP are analogous to the node and graph levels in a graph,
which represent the local and global features, respectively. Li
6 www.drugdiscoverytoday.com
et al.62 pretrained a model at both the node and graph level. At
the graph level, each molecule was decomposed into two parts,
and the model needed to predict whether the two parts came
from the same molecule. The process of contrastive learning
method on molecular graph is shown in Fig. 3a.

The generative method reconstructs the input through a
encoder–decoder model. The molecular graph BERT63 combines
local message passing and GNN into the BERT model for pre-
training. Koge et al.64 used a molecular hypergraph grammar
variational autoencoder (VAE)65 to extract the embedding of
molecules, which embedded the molecular structures and physi-
cal properties into the latent feature of VAE. The process of gen-
erative learning method based on molecular graphs is shown in
Fig. 3b.

The predictive model normally used in MPP is used to predict
the type or attribute of a node or an edge. GROVER66 combines
two-level SSLs. The first SSL task, defined at the node/edge level,
was to predict the property of a subgraph. The second SSL task,
defined at the graph level, was to predict the occurrence of differ-
ent motifs; combining both two levels could provide structural
and semantic information about a molecule. Moreover, the con-
catenation of SSL and supervised learning provides a new way to
understand a molecule. For example, SUGAR67 combines both
supervised and SSL methods based on subgraphs, and the two
losses coming from the classification and mutual information
maximization are grouped into the final loss function. The eval-
uation results demonstrated that the model performance was
improved by the introduction of SSL. The process of predictive
learning method based on molecular graphs is shown in Fig. 3c.
Image-based methods
DL methods have achieved great success in the image processing
field, which also sheds light on QSAR/QSPR. More concretely,
the molecules can be converted to images, so that traditional
DL models can be used for QSAR/QSPR tasks, among which
CNN is the most widely adopted for molecular feature extraction.

For image generation-based methods, the simplest way is to
use molecular images directly, which can be converted by soft-
wares, such as RDKit68 and Open Babel.69 However, this type of
image introduces a large blank area without valid information.
In addition, scale sensibility is another problem because all mole-
cules are converted into images of the same size. In other words,
the size of the same atom/structure is vibrational in different
molecules because of the fixed size of the whole molecular image.

Other image generation methods try to avoid this problem.
Yoshimori et al.70 generated one map for each atom, and formed
a molecular topographic map by adding all atomic maps together
as a 28 � 28 heat map. MolMap71 maps molecular descriptors
and fingerprint features into 2D feature maps, resulting in a
method that combines hand-crafted features into a 2D space to
capture the intrinsic correlations of molecular features.

The frequency domain is another important field in image
processing. Tchagang et al.72 converted molecules to images
through frequency-domain methods. They first converted the
molecule to a 1D Coulomb matrix, and a time–frequency-like
(TFL) method was then introduced to generate a TFL image,
which could encode the structural, geometric, energetic, elec-
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FIGURE 3
Different types of self-supervised learning (SSL) method using graphs. (a) Contrastive SSL: uses data augmentation methods, such as node dropping, edge
dropping, and subgraph substitution for positive pairs, while selecting other augmented graphs randomly for negative pairs. (b) Generative SSL: the input is
reconstructed through the encoder–decoder model to obtain the latent features for representation. (c) Predictive SSL: randomly masks some nodes or edges
and lets the model predict outcomes; by doing so, the model is able to learn latent features and generate effective molecular representations.
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tronic, and thermodynamic properties of the molecule. Mol-
PSI73 is an equal-sized molecular 2D image representation
method based on a spectral graph model, in which a filtration
process is used to generate a series of multiscale topological rep-
resentations and geometric information.

Moreover, molecular images have been used to detect func-
tional groups through a pretrained model, which was further
fine-tuned for activity cliff prediction74. The learned weights
were extracted to highlight the key functional groups that distin-
guished compounds forming activity cliff and nonactivity cliff
pairs.

Thus, image-based methods are not mainstream for MPP
because they have to convert data samples to the Euclidean
space, which is not suitable for molecular property prediction
because of the absence of atom and bond attributes. Neverthe-
less, image-based DL models have been proposed and developed
in recent years. To take advantage of image-based DL models,
image generation methods that are able to discover the relation-
ship among atoms from certain views warrant further research,
which will be helpful for the generation of new effective molec-
ular representations.

3D Graph-based methods
The conformation of a molecule normally contains the atomic
3D coordinates of the molecule, which are also known as its geo-
metric data and can provide additional spatial information for
MPP. The first problem to be solved is that the 3Dmolecular con-
formation data set is limited. To enlarge the application fields of
www.drugdiscoverytoday.com 7
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geometry-based methods, conformation generation is intro-
duced on 2D data sets. Merck Molecular Force Field (MMFF94),75

which is embedded in the RDKit, can be used for conformation
generation. Moreover, Hamiltonian neural networks76 were pro-
posed to predict the conformation of molecules and the pre-
dicted 3D coordinates are fed into an MPNN-based fingerprint
generator for molecular representation.

However, there are still relatively few methods focusing on
the geometry-based data compared with 1D- and 2D-based meth-
ods. Analogous to the 2D data, geometry-based methods are also
divided into two categories: 3D graph-based methods and 3D
grid-based methods.

3D graph-based methods mainly adjust or improve the GCN
with the introduction of geometric information. Except for the
adjacent matrix and feature matrix, 3D-GCN77 introduces a rela-
tive position matrix comprising interatomic 3D positions to
ensure translational invariance in the convolutional process. It
was shown that the trained model had an intrinsic characteristic
of rotational randomness without additional augmentation
methods. Lu et al.78 designed a GCN capturing multilevel quan-
tum interactions from the conformation and spatial information
of molecules. The different orders of neighboring nodes were
involved sequentially in the model to ensure that the node rep-
resentation could cover higher-order interactions. However,
unlike other large graph data, such as social media and citation
network graphs, the number of nodes in the molecular graph is
limited. In some cases, high-order neighbors might cover a large
number of atoms in a molecule and consequently lead to over-
smoothing (see above).

To solve the problem of messages passing in 3D graphs, the
spherical message passing method79 was proposed. Specifically,
the 3D coordinate of each atom is converted into the spherical
coordinate system, and the neighboring node of the origin node
is specified by a 3-tuple comprising the edge length, angle
between edges, and torsion angle. Compared with the plain 3D
coordinates, the 3-tuple is more flexible and able to more accu-
rately depict the structure of molecules. Spherical message pass-
ing is invariant to the translation and rotation of input
molecules. In addition, the geometric message passing neural
network (GemNet)80 also uses the spherical representations of
molecules to ensure that the model is invariant to translation
and equivariant to permutation and rotation.

Moreover, the SSLmethod is an important branch of 3D graph-
based methods to discover the distinct features of a graph. Fang
et al.81 proposed a self-supervised framework that fully uses the
molecular geometry information. They constructed a novel
bond-angle graph, in which chemical bonds within a molecule
were regarded as nodes rather than edges, whereas the angle
formed between two bonds was considered as the edge between
them. The items of 1-hop neighborhoods of certain atoms were
masked for bond length and bond angle prediction to extract local
representation. Liu et al.82 proposed an SSL method containing
contrastive learning and generative learning methods between
3D and 2D views of molecules. In contrastive learning, both 3D
and2Dgraphs from the samemolecule are regarded as the positive
pairs to train the model. In generative learning, the model is
trained to generate the 3D conformers from their 2D topology.
The two strategies were combined for molecular representation.
8 www.drugdiscoverytoday.com
3D Grid-based methods
3D grids is another representation method using molecular geo-
metric data, which places each atom in one or more voxels of the
grid. Indeed, macromolecules, such as proteins, can be better rep-
resented by a 3D grid,83 but such data still show good perfor-
mance in MPP, especially for some quantum mechanics
properties. The 3D CNN is the best choice for 3D grid data; thus,
a more powerful and informative grid for 3D CNN can improve
the performance of MPP.

Libmolgrid84 provides a library to generate voxel grids of 3D
molecular data to represent molecules. The resolution of the grid
is an important factor affecting the results. Multi-resolution 3D-
DenseNet85 uses an atom-centered Gaussian density model to
create the 3D gird, and multi-channel grids with different scales
(4–14 Å) are generated as input data for 3D-DenseNet processing
and prediction. Casey et al.86 also generated two 3D spatial point
grids (electron charge density and electrostatic potential) by
using a Gaussian model. The rotation augmentation method
was also applied to the above two methods to enlarge the train-
ing data set instead of varying the size, Tran et al.87 selected C, H,
O, N, S, and Cl as independent channels of the 3D grid, and a
CNN-based autoencoder was used for molecular representation.
Kuzminykh et al.88 found that the regular 3D grid of molecules
was too sparse and affected the performance of CNN, and instead
proposed a wave transform smoothing method to fill the neigh-
boring voxels of each atom.

Thus, there is still a lack of 3D graph-based and 3D grid-based
methods for MPP, and the long analysis time required is a serious
issue, especially for the 3D grid-based method. Moreover, graph
convolution on 3D graph data remains an open question.
Extending traditional GCN approaches to 3D scenarios by simply
adding the 3D location information does not fully exploit the
advantages of geometric data. Although spherical message pass-
ing has attempted to fit a specific GCN on a 3D graph, this
remains a promising approach to design a 3D graph message-
passing mechanism.
Hybrid data-based methods and ensemble learning
All the aforementioned 1D, 2D, and 3D representation methods
present the molecule in different ways, and combining them
could provide a multiview of a molecule. GraSeq89 combines
molecular graph and SMILES sequences, and uses GCN and
biLSTM for encoding. Karim et al.90 combined SMILES, finger-
prints, molecular graphs, and 2D and 3D descriptors with multi-
ple DL models for quantitative toxicity prediction. Normally, the
fingerprints are regarded as a popular auxiliary factor, and both
image-based91 and graph-based92 methods have combined fin-
gerprints to improve the prediction performance.

Ensemble learning could also connect multiple classifiers to
enhance the performance of the joint model over each individ-
ual one. Kosasih et al.93 built an ensemble of three GINs. Busk
et al.94 also built an ensemble of multiple MPNNs, which were
initialized with random parameters and trained individually on
the same data set. Moreover, they used the variance of all classi-
fiers to represent the predicted uncertainty, and the calibrated
results improved the performance of the model. Karim et al.95

converted the SMILES string into a one-hot vector indicating
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the absence of each character, combing molecular image and 2D
numerical features as the input, and an RNN, a CNN, and a fully
connected neural network were trained on these three types of
data, respectively. The outputs of these networks were combined
by an ensemble averaging method or a meta-neural network.
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Transfer learning, multi-task learning, and meta-
learning
The deficiency of experimental data sets is another problem in
MPP. Using large data sets from other domains to help to find
the pattern of the target domain with fewer data would be effec-
tive in overcoming this problem. Transfer learning, multi-task
learning, and meta-learning are all suggested for this purpose.

For transfer learning, the model is first trained on a large data
set for certain pretext tasks, thereby learning a general represen-
tation of molecules. The learned general representation is then
used for the downstream task (usually with limited samples) to
transfer a priori knowledge. MRlogP96 uses transfer learning on
low-accuracy predicted logP values on the large data set
(500 000 molecules), and the parameters are fine-tuned on a
small accurate data set of 244 drug-like compounds. In the com-
puter vision area, transfer learning is more frequently used with
the help of the ImageNet data set,97 which provides more than
1 000 000 images. Zhong et al.98 used the pretrained model on
the ImageNet and transferred it to the molecular image data for
QSAR tasks.

Multi-task learning trains all tasks simultaneously and shares
the representations to improve the generalization of the predic-
tion. Liu et al.99 used multi-task learning to predict 12 quantum
chemical properties from the QM9 and Alchemy data sets. More-
over, an atom-centered symmetry function was selected as an
auxiliary prediction target in the framework to improve the gen-
eralizability and transferability.

In recent years, the meta-learning method has emerged to
solve the few-shot problem, also called ‘learning to learn’. In
the training process, the meta-learning divides the training data
set into different meta tasks to learn the well-initialized model
parameters with high generalization ability. The model is
updated by a small number of gradient descents on a new task
to enhance the performance of the model. For example, Meta-
MGNN100 combined graph neural network, SSL, and task
weight-aware meta-learning in Tox21 and six tasks in SIDER for
MPP. Wang et al.101 proposed a property-aware embedding
method considering the relationship between different molecu-
lar properties and different molecular substructures, and a
meta-learning method selectively updated the parameters within
tasks to model generic- and property-aware knowledge
separately.

Thus, all three types of learning method can find the relation-
ship between different tasks and solve the problem of limited
data. Normally, the transfer learning method can use large-
scale data sets, such as ChEMBL102 and ZINC,103 to learn a gen-
eric representation of molecule and fine-tune it to adapt to speci-
fic datasets. Multi-task learning improves the generalization of a
model by learning several related tasks simultaneously, whereas
meta-learning predicts unseen tasks with limited data,104 which
is promising in the MPP field for the few-shot problem and to
avoid expensive, time-consuming and laborious experimental
data collection.
Interpretability of the DL model on molecular
property prediction
The most controversial area of DL is its interpretability.105 Inter-
pretable DL methods are divided into two classes: passive and
active. Passive methods use the parameters in the DL model for
explanation, whereas active methods change the training pro-
cess to improve the interpretability of the model. Jiménez-Luna
et al.106 stated that transparency, justification, informativeness,
and uncertainty estimation are the main aspects of the inter-
pretability of AI methods in drug design.

Pope et al.107 evaluated three prominent interpretability
methods on GCN and reported that salient subgraphs could be
explained as functional groups. Amides, tricholoromethyl, sul-
fonamides, and aromatic structures are all highlighted through
interpretability methods. Jiménez-Luna et al.108 proposed a fea-
ture attribution approach using the trained MPNN model to pro-
duce an importance score for each node, and atoms were colored
according to their importance scores. The method could recog-
nize the pharmacophore motif and identify the property cliffs.

For molecular property prediction, the passive method is still
the main method used for understanding the relationship
between the precise substructure of the molecule and its prop-
erty. The attention mechanism could learn the weight of differ-
ent parts of input to ensure that the DL model could focus on
the important part. The concept of the attention mechanism
could also be used for the interpretability of DL models, which
can find the significant atoms or groups and their corresponding
contributions to the molecular property. For example, Tang
et al.109 visualized self-attention values to detect which parts of
molecule contributed to its lipophilicity or water solubility. Wu
et al.110 developed a multi-task graph attention framework for
toxicity prediction. The framework extracted features of molecu-
lar substructures, with each substructure being assigned an atten-
tion weight. Highest-weighted substructures, such as acyl
chloride, semicarbazone, nitrite, and nitrosamide (known as
structural alerts), were detected.

In addition, the uncertainty estimation is an important way to
evaluate the reliability of model. Ryu et al.111 used a Bayesian
GCN for the prediction of molecular properties. It replaced the
standard dropout with a ‘Concrete’ dropout, and estimated the
model uncertainty through a Bayesian approach. The authors
found that uncertainty can be used as the confidence indicator
of prediction. Hirschfel et al. 112 evaluated many uncertainty esti-
mators of molecular property predictions and proposed that join-
ing multiple weak uncertainty estimators could lead to more
consistent performance.
Molecular property prediction challenges and future
work
Self-supervised learning methods in 3D data
The SSL method is a promising direction to discover the distinct
features of molecules. Both 1D data- and 2D data-based methods
have been proposed in recent years, and have achieved relatively
good performance. For SSL methods, the design of the pretext
www.drugdiscoverytoday.com 9
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task is the most crucial step. However, the abundant information
hidden in 3D molecular data remains to be fully exploited. 3D
SSL methods have already been applied in many fields; thus,
designing a novel molecular 3D SSL method would be very useful
for predicting molecular properties. Moreover, virtual screening
is used to find the ligand–target pair with high binding affinity,
which is a key step in drug discovery and design.113,114 In virtual
screening software, the conformations of both the target and
ligand are required. Therefore, an accurate and comprehensive
3D representation of the molecule will also be helpful for virtual
screening.

Graph convolution methods with experience
The GCN method has become the mainstream method in
molecule-related tasks because of its excellent performance on
graph data. However, there is still room for improvement, such
as introducing empirical data and expert knowledge. We cannot
ignore the effect of human experience on the DL model, and
there are some ways of injecting expertise into the model by
defining the types of atoms, bonds, and functional groups.61,115

However, some high-level or complex domain experiences can
be more powerful in the MPP, such as the relationship between
the motif and properties, which have not yet been fully
exploited. Designing this type of high-level experience as the
input of the DL model remains an open question.

1D, 2D, and 3D data fusion and selection methods
Generally, high-dimensional data contain more information
compared with low-dimensional data. If this is the case, then
the performance of models based on 2D data should be better
than that based on 1D data. However, as we discussed above,
the hybrid method uses 1D, 2D, and 3D data, and ablation exper-
iments have demonstrated their individual roles in MPP, indicat-
ing that the information contributed by low-dimension data was
not completely covered by high-dimension data. A question
raised here is why 1D data still contribute to the model perfor-
mance when high-dimension data (2D or 3D data) are already
being used. This can be answered from the following two per-
spectives. First, some information mgiht be lost when converting
1D sequences to 2D graphs. Second, the DL model cannot fully
exploit the hidden information in high-dimension data; there-
fore, the 1D data still serve as an auxiliary information source.
Whatever the reason, how to determine an appropriate type (or
the optimal combination of multiple types) of data remains an
open question.

Meta-learning methods
Transfer learning, multi-task learning, and meta-learning are all
used to solve the lack of experimental data available for certain
properties. We have already reviewed some of the appropriate
methods here and, in our opinion, we believe that the meta-
10 www.drugdiscoverytoday.com
learning method is one of the most promising research directions
at present. To be more specific, meta-learning is an ideal
approach for practical applications, because there might be only
a few instances for certain tasks (e.g., predicting some rare molec-
ular properties), when traditional ML or DL models cannot be
used because of the limited amount of data samples. Thus, the
meta-learning method for MPP warrants further research.

The interpretability of DL models
We have discussed a few methods regarding the interpretability
of DL. Unlike traditional tasks in image processing, most
molecule-related tasks are highly specialized and need chemical
experts to analyze the underlying mechanisms, such as the role
of molecular substructures. Such characteristics of molecule-
related tasks are somewhat in contradiction to the ‘black-box’
nature of DL models. As a result, improving the interpretability
of DL models is always necessary. More concretely, locating the
key functional elements within the model by analyzing both
the successfully predicted and the failed data samples will benefit
not only the final performance of DL models, but also the discov-
ery of novel QSAR theory. In our opinion, the active method is a
more powerful tool to increase the interpretability of DL models
by adding specific parameters to them.

Concluding remarks
In this review, we have surveyed DL methods on multiple types
of molecular data and the emerging methods including transfer
learning, meta learning, and so on. In addition, we have also dis-
cussed the interpretability methods of molecules in DL models.
Significant progress in drug discovery has been made using the
DL method. However, it still faces more challenges to improve
the performance, robustness and interpretability of molecular
representation and property prediction.

Data availability
No data was used for the research described in the article.

Declaration of Competing Interest
The authors declare that they have no known competing

financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgment
This research was funded by the Shandong Key Science and

Technology Innovation Project (2021CXGC011003), Shandong
Provincial Postdoctoral Program for Innovative Talents
(SDBX2020003), Natural Science Foundation of China
(62202498), Shandong Provincial Natural Science Foundation
(ZR2022QF111, ZR2021QF023), and Fundamental Research
Funds for the Central Universities (21CX06018A).
References
1 Z. Wu, B. Ramsundar, E.N. Feinberg, J. Gomes, C. Geniesse, A.S. Pappu, et al.,
MoleculeNet: a benchmark for molecular machine learning, Chem Sci 9 (2018)
513–530.
2 Z. Yang, W. Zhong, L. Zhao, C.C. Yu-Chian, MGraphDTA: deep multiscale graph
neural network for explainable drug-target binding affinity prediction, Chem Sci
13 (2022) 816–833.

http://refhub.elsevier.com/S1359-6446(22)00366-X/h0005
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0005
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0005
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0010
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0010
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0010


K
EY

N
O
TE

(G
R
EE

N
)

Drug Discovery Today d Volume 27, Number 12 d December 2022 KEYNOTE (GREEN)
3 W. Yuan, G. Chen, C.Y.C. Chen, FusionDTA: attention-based feature
polymerizer and knowledge distillation for drug–target binding affinity
prediction, Brief Bioinform 23 (2022) bbab506.

4 F. Wang, X. Feng, X. Guo, L. Xu, L. Xie, S. Chang, Improving de novo molecule
generation by embedding LSTM and attention mechanism in CycleGAN, Front
Genet 12 (2021) 709500.

5 S. Wang, T. Song, S. Zhang, M. Jiang, Z. Wei, Z. Li, Molecular substructure tree
generative model for de novo drug design, Brief Bioinform 23 (2022) bbab592.

6 F. Wang, X. Diao, S. Chang, L. Xu, Recent progress of deep learning in drug
discovery, Curr Pharm Des 27 (2021) 2088–2096.

7 D. Weininger, SMILES, a chemical language and information system. 1.
Introduction to methodology and encoding rules, J Chem Inf Comput Sci 28
(1988) 31–36.

8 M. Krenn, F. Häse, A. Nigam, P. Friederich, A. Aspuru-Guzik, Self-referencing
embedded strings (SELFIES): A 100% robust molecular string representation,
Mach Learn Sci Technol 1 (2020) 45024.

9 D. Rogers, M. Hahn, Extended-connectivity fingerprints, J Chem Inf Model 50
(2010) 742–754.

10 J.L. Durant, B.A. Leland, D.R. Henry, J.G. Nourse, Reoptimization of MDL keys
for use in drug discovery, J Chem Inf Comput Sci 42 (2002) 1273–1280.

11 Y. Ding, M. Chen, C. Guo, P. Zhang, J. Wang, Molecular fingerprint-based
machine learning assisted QSAR model development for prediction of ionic
liquid properties, J Mol Liq 326 (2021) 115212.

12 L. Xie, L. Xu, R. Kong, S. Chang, X. Xu, Improvement of prediction performance
with conjoint molecular fingerprint in deep learning, Front Pharmacol 11 (2020)
606668.

13 M. Wang, Z. Cang, G.W. Wei, A topology-based network tree for the prediction
of protein–protein binding affinity changes following mutation, Nat Mach Intell
2 (2020) 116–123.

14 D.D. Nguyen, G.W. Wei, AGL-score: algebraic graph learning score for protein–
ligand binding scoring, ranking, docking, and screening, J Chem Inf Model 59
(2019) 3291–3304.

15 Z. Cang, L. Mu, G.W. Wei, Representability of algebraic topology for
biomolecules in machine learning based scoring and virtual screening, PLoS
Comput Biol 14 (2018) e1005929.

16 D.D. Nguyen, Z. Cang, K. Wu, M. Wang, Y. Cao, G.W. Wei, Mathematical deep
learning for pose and binding affinity prediction and ranking in D3R Grand
Challenges, J Comput Aided Mol Des 33 (2019) 71–82.

17 Z. Cang, G.W. Wei, Integration of element specific persistent homology and
machine learning for protein–ligand binding affinity prediction, Int J Numer
Method Biomed Eng 34 (2018) e2914.

18 Z. Cang, G.W. Wei, TopologyNet: Topology based deep convolutional and
multi–task neural networks for biomolecular property predictions, PLoS Comput
Biol 13 (2017) e1005690.

19 Z. Meng, K. Xia, Persistent spectral–based machine learning (PerSpect ML) for
protein–ligand binding affinity prediction, Sci Adv 7 (2021) eabc5329.

20 J. Wee, K. Xia, Forman persistent Ricci curvature (FPRC)-based machine learning
models for protein–ligand binding affinity prediction, Brief Bioinform 22 (2021)
bbab136.

21 X. Liu, H. Feng, J. Wu, K. Xia, Dowker complex based machine learning (DCML)
models for protein–ligand binding affinity prediction, PLoS Comput Biol 18
(2022) e1009943.

22 D.D. Nguyen, K. Gao, J. Chen, R. Wang, G.W. Wei, Unveiling the molecular
mechanism of SARS-CoV-2 main protease inhibition from 137 crystal
structures using algebraic topology and deep learning, Chem Sci 11 (2020)
12036–12046.

23 D.D. Nguyen, K. Gao, M. Wang, G.W. Wei, MathDL: mathematical deep
learning for D3R Grand Challenge 4, J Comput Aided Mol Des 34 (2020)
131–147.

24 X. Liu, H. Feng, J. Wu, K. Xia, Persistent spectral hypergraph based machine
learning (PSH-ML) for protein–ligand binding affinity prediction, Brief
Bioinform 22 (2021) bbab127.

25 M. Sun, S. Zhao, C. Gilvary, O. Elemento, J. Zhou, F. Wang, Graph convolutional
networks for computational drug development and discovery, Brief Bioinform
21 (2020) 919–935.

26 J. Xiong, Z. Xiong, K. Chen, H. Jiang, M. Zheng, Graph neural networks for
automated de novo drug design, Drug Discov Today 26 (2021) 1382–1393.

27 J.H. Chen, Y.J. Tseng, Different molecular enumeration influences in deep
learning: an example using aqueous solubility, Brief Bioinform 22 (2021)
bbaa092.

28 T.B. Kimber, M. Gagnebin, A. Volkamer, Maxsmi: maximizing molecular
property prediction performance with confidence estimation using SMILES
augmentation and deep learning, Artif Intell Life Sci 1 (2021) 100014.
29 Lim S, Lee YO. Predicting chemical properties using self-attention multi-task
learning based on SMILES representation. In: 25th International Conference on
Pattern Recognition (ICPR). Pisctaway; IEEE; 2021: 3146–53.

30 M. Hirohara, Y. Saito, Y. Koda, K. Sato, Y. Sakakibara, Convolutional neural
network based on SMILES representation of compounds for detecting chemical
motif, BMC Bioinformatics 19 (2018) 526.

31 Y. Hou, S. Wang, B. Bai, H.C.S. Chan, S. Yuan, Accurate physical property
predictions via deep learning, Molecules 27 (2022) 1668.

32 A.L. Nazarova, L. Yang, K. Liu, A. Mishra, R.K. Kalia, K. Nomura, et al., Dielectric
polymer property prediction using recurrent neural networks with
optimizations, J Chem Inf Model 61 (2021) 2175–2186.

33 C. Li, J. Feng, S. Liu, J. Yao, A novel molecular representation learning for
molecular property prediction with a multiple SMILES-based augmentation,
Comput Intell Neurosci 2022 (2022) 8464452.

34 X. Li, D. Fourches, SMILES pair encoding: a data-driven substructure
tokenization algorithm for deep learning, J Chem Inf Model 61 (2021) 1560–
1569.

35 Q. Lv, G. Chen, L. Zhao, W. Zhong, C.C. Yu-Chian, Mol2Context-vec: learning
molecular representation from context awareness for drug discovery, Brief
Bioinform 22 (2021) bbab317.

36 J. Li, X. Jiang, Mol-BERT: an effective molecular representation with BERT for
molecular property prediction, Wirel Commun Mob Comput 2021 (2021)
7181815.

37 J. Shao, Q. Gong, Z. Yin, W. Pan, S. Pandiyan, L. Wang, S2DV: converting
SMILES to a drug vector for predicting the activity of anti-HBV small molecules,
Brief Bioinform 23 (2022) bbab593.

38 Chen T, Kornblith S, Norouzi M, Hinton G. A simple framework for contrastive
learning of visual representations. In: 25th International Conference on Machine
Learning. Pisctaway; IEEE; 2021: 1597–607.

39 Liu X, Zhang F, Hou Z, Mian L, Wang Z, Zhang J, et al. Self-supervised learning:
generative or contrastive. IEEE Trans Knowl Data Eng. Published online June 21,
2021. http://dx.doi.org/10.1109/TKDE.2021.3090866.

40 Wu L, Lin H, Tan C, Gao Z, Li SZ. Self-supervised learning on graphs: contrastive,
generative, or predictive. IEEE Trans Knowl Data Eng. Published online December
1, 2021. http://dx.doi.org/10.1109/TKDE.2021.3131584.

41 Devlin J, Chang MW, Lee K, Toutanova K. BERT: pre-training of deep
bidirectional transformers for language understanding. arXiv. 2018; 2018:
arXiv181004805. 2018.

42 Fabian B, Edlich T, Gaspar H, Segler M, Meyers J, Fiscato M, et al. Molecular
representation learning with language models and domain-relevant auxiliary
tasks. arXiv. 2020; 2020: arXiv201113230.

43 S. Wang, Y. Guo, Y. Wang, H. Sun, J. Huang, in: SMILES-bert: large scale
unsupervised pre-training for molecular property prediction, Association for
Computing Machinery, New York, 2019, pp. 429–436.

44 S. Hu, P. Chen, P. Gu, B. Wang, A deep learning-based chemical system for QSAR
prediction, IEEE J Biomed Heal Informatics 24 (2020) 3020–3028.

45 X. Li, D. Fourches, Inductive transfer learning for molecular activity prediction:
next-gen QSAR models with MolPMoFiT, J Cheminform 12 (2020) 1–15.

46 R. Winter, F. Montanari, F. Noé, D.A. Clevert, Learning continuous and data-
driven molecular descriptors by translating equivalent chemical representations,
Chem Sci 10 (2019) 1692–1701.

47 P. Karpov, G. Godin, I.V. Tetko, Transformer-CNN: Swiss knife for QSAR
modeling and interpretation, J Cheminform 12 (2020) 1–12.

48 R. Liao, Z. Zhao, R. Urtasun, R.S. Zemel, Lanczosnet: multi-scale deep graph
convolutional networks, arXiv 2019 (2019).

49 C. Shang, Q. Liu, Q. Tong, J. Sun, M. Song, J. Bi, Multi-view spectral graph
convolution with consistent edge attention for molecular modeling,
Neurocomputing 445 (2021) 12–25.

50 J. Wang, D. Cao, C. Tang, L. Xu, Q. He, B. Yang, et al., DeepAtomicCharge: a new
graph convolutional network–based architecture for accurate prediction of
atomic charges, Brief Bioinform 22 (2021) bbaa183.

51 Z. Xiong, D. Wang, X. Liu, F. Zhong, X. Wan, X. Li, et al., Pushing the
boundaries of molecular representation for drug discovery with the graph
attention mechanism, J Med Chem 63 (2019) 8749–8760.

52 X.S. Li, X. Liu, L. Lu, X.S. Hua, Y. Chi, K. Xia, Multiphysical graph neural
network (MP-GNN) for COVID-19 drug design, Brief Bioinform 23 (2022)
bbac231.

53 H. Ma, Y. Bian, Y. Rong, W. Huang, T. Xu, W. Xie, et al., Cross-dependent graph
neural networks for molecular property prediction, Bioinformatics 38 (2022)
2003–2009.

54 P. Li, Y. Li, C.Y. Hsieh, S. Zhang, X. Liu, H. Liu, et al., TrimNet: learning
molecular representation from triplet messages for biomedicine, Brief Bioinform
22 (2021) bbaa266.
www.drugdiscoverytoday.com 11

http://refhub.elsevier.com/S1359-6446(22)00366-X/h0015
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0015
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0015
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0020
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0020
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0020
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0025
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0025
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0030
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0030
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0035
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0035
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0035
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0040
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0040
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0040
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0045
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0045
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0050
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0050
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0055
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0055
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0055
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0060
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0060
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0060
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0065
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0065
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0065
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0070
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0070
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0070
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0075
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0075
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0075
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0080
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0080
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0080
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0085
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0085
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0085
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0090
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0090
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0090
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0095
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0095
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0100
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0100
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0100
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0105
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0105
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0105
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0110
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0110
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0110
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0110
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0115
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0115
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0115
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0120
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0120
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0120
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0125
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0125
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0125
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0130
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0130
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0135
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0135
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0135
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0140
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0140
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0140
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0150
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0150
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0150
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0155
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0155
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0160
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0160
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0160
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0165
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0165
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0165
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0170
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0170
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0170
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0175
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0175
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0175
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0180
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0180
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0180
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0185
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0185
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0185
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0215
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0215
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0215
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0215
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0220
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0220
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0225
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0225
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0230
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0230
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0230
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0235
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0235
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0240
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0240
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0245
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0245
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0245
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0250
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0250
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0250
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0255
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0255
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0255
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0260
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0260
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0260
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0265
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0265
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0265
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0270
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0270
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0270


K
EY

N
O
TE

(G
R
EEN

)

KEYNOTE (GREEN) Drug Discovery Today d Volume 27, Number 12 d December 2022
55 M. Withnall, E. Lindelöf, O. Engkvist, H. Chen, Building attention and edge
message passing neural networks for bioactivity and physical–chemical property
prediction, J Cheminform 12 (2020) 1–18.

56 Y. Su, Z. Wang, S. Jin, W. Shen, J. Ren, M.R. Eden, An architecture of deep
learning in QSPR modeling for the prediction of critical properties using
molecular signatures, AIChE J 65 (2019) e16678.

57 Z. Wang, Y. Su, W. Shen, S. Jin, J.H. Clark, J. Ren, et al., Predictive deep learning
models for environmental properties: the direct calculation of octanol–water
partition coefficients frommolecular graphs, Green Chem 21 (2019) 4555–4565.

58 W. Jin, R. Barzilay, T. Jaakkola, Junction tree variational autoencoder for
molecular graph generation, Proc Machine Learn Res 80 (2018) 2323–2332.

59 S. Wang, Z. Li, S. Zhang, M. Jiang, X. Wang, Z. Wei, Molecular property
prediction based on a multichannel substructure graph, IEEE Access 8 (2020)
18601–18614.

60 Y. Wang, J. Wang, Z. Cao, A.B. Farimani, MolCLR: molecular contrastive
learning of representations via graph neural networks, arXiv 2021 (2021).

61 Sun M, Xing J, Wang H, Chen B, Zhou J. MoCL: data-driven molecular
fingerprint via knowledge-aware contrastive learning from molecular graph. In:
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data
Mining. New York; Association for Computing Machinery: 2021: 3585–94.

62 P. Li, J. Wang, Y. Qiao, H. Chen, Y. Yu, X. Yao, et al., An effective self-supervised
framework for learning expressive molecular global representations to drug
discovery, Brief Bioinform 22 (2021) bbab109.

63 X.C. Zhang, C.K. Wu, Z.J. Yang, Z.X. Wu, J.C. Yi, C.Y. Hsieh, et al., MG-BERT:
leveraging unsupervised atomic representation learning for molecular property
prediction, Brief Bioinform 22 (2021) bbab152.

64 D. Koge, N. Ono, M. Huang, M. Altaf-Ul-Amin, S. Kanaya, Embedding of
molecular structure using molecular hypergraph variational autoencoder with
metric learning, Mol Inform 40 (2021) 2000203.

65 H. Kajino, Molecular hypergraph grammar with its application to molecular
optimization, Proc Machine Learn Res 97 (2019) 3183–3191.

66 Y. Rong, Y. Bian, T. Xu, W. Xie, Y. Wei, W. Huang, et al., Self-supervised graph
transformer on large-scale molecular data, Adv Neural Inf Process Syst 33 (2020)
12559–12571.

67 Q. Sun, J. Li, H. Peng, J. Wu, Y. Ning, P.S. Yu, et al., SUGAR: Subgraph neural
network with reinforcement pooling and self-supervised mutual information
mechanism, Association for Computing Machinery, New York, 2021: 2081–91..

68 Landrum G. RDKit: Open-Source Cheminformatics Software. http: //www.rdkit.org
[Accessed September 20, 2022].

69 N.M. O’Boyle, M. Banck, C.A. James, C. Morley, T. Vandermeersch, G.R.
Hutchison, Open Babel: an open chemical toolbox, J Cheminform 3 (2011)
1–14.

70 A. Yoshimori, Prediction of molecular properties using molecular topographic
map, Molecules 26 (2021) 4475.

71 W.X. Shen, X. Zeng, F. Zhu, C. Qin, Y. Tan, Y.Y. Jiang, et al., Out-of-the-box
deep learning prediction of pharmaceutical properties by broadly learned
knowledge-based molecular representations, Nat Mach Intell 3 (2021)
334–343.

72 A.B. Tchagang, J.J. Valdés, Time frequency representations and deep
convolutional neural networks: a recipe for molecular properties prediction,
in: In: 2021 IEEE Canadian Conference on Electrical and Computer Engineering
(CCECE). Pisacataway, 2021, pp. 1–5.

73 P. Jiang, Y. Chi, X.S. Li, X. Liu, X.S. Hua, K. Xia, Molecular persistent spectral
image (Mol–PSI) representation for machine learning models in drug design,
Brief Bioinform 23 (2022) bbab527.

74 J. Iqbal, M. Vogt, J. Bajorath, Learning functional group chemistry from
molecular images leads to accurate prediction of activity cliffs, Artif Intell Life
Sci 1 (2021) 100022.

75 T.A. Halgren, Merck molecular force field. I. Basis, form, scope, parameterization,
and performance of MMFF94, J Comput Chem 17 (1996) 490–519.

76 Z. Li, S. Yang, G. Song, C.L. HamNet, onformation-guided molecular
representation with Hamiltonian neural networks, arXiv 2021 (2021).

77 H. Cho, I.S. Choi, Enhanced deep-learning prediction of molecular properties
via augmentation of bond topology, ChemMedChem 14 (2019) 1604–1609.

78 Lu C, Liu Q, Wang C, Huang Z, Lin P, He L. Molecular property prediction: a
multilevel quantum interactions modeling perspective. In: Proceedings of the
AAAI Conference on Artificial Intelligence. Menlo Park; AAAI; 2019: 1052–60.

79 Y. Liu, L. Wang, M. Liu, X. Zhang, B. Oztekin, S. Ji, Spherical message passing for
3D graph networks, arXiv 2021 (2021).

80 J. Klicpera, F. Becker, S. Günnemann, GemNet: Universal directional graph
neural networks for molecules, Adv Neural Inf Process Syst 34 (2021) 6790–
6802.
12 www.drugdiscoverytoday.com
81 X. Fang, L. Liu, J. Lei, D. He, S. Zhang, J. Zhou, et al., Geometry-enhanced
molecular representation learning for property prediction, Nat Mach Intell 4
(2022) 127–134.

82 S. Liu, H. Wang, W. Liu, J. Lasenby, H. Guo, J. Tang, Pre-training molecular
graph representation with 3D geometry, arXiv 2021 (2021).

83 L. Xie, L. Xu, S. Chang, X. Xu, L. Meng, Multitask deep networks with grid
featurization achieve improved scoring performance for protein–ligand binding,
Chem Biol Drug Des 96 (2020) 973–983.

84 J. Sunseri, D.R. Koes, Libmolgrid: graphics processing unit accelerated molecular
gridding for deep learning applications, J Chem Inf Model 60 (2020) 1079–1084.

85 S. Liu, J. Li, K.C. Bennett, B. Ganoe, T. Stauch, M. Head-Gordon, et al.,
Multiresolution 3D-DenseNet for chemical shift prediction in NMR
crystallography, J Phys Chem Lett 10 (2019) 4558–4565.

86 A.D. Casey, S.F. Son, I. Bilionis, B.C. Barnes, Prediction of energetic material
properties from electronic structure using 3D convolutional neural networks, J
Chem Inf Model 60 (2020) 4457–4473.

87 N. Tran, D. Kepple, S. Shuvaev, A. Koulakov, DeepNose: using artificial neural
networks to represent the space of odorants, Proc Machine Learn Res 97 (2019)
6305–6314.

88 D. Kuzminykh, D. Polykovskiy, A. Kadurin, A. Zhebrak, I. Baskov, S. Nikolenko,
et al., 3D molecular representations based on the wave transform for
convolutional neural networks, Mol Pharm 15 (2018) 4378–4385.

89 Z. Guo, W. Yu, C. Zhang, M. Jiang, N.V. Chawla, in: GraSeq: graph and sequence
fusion learning for molecular property prediction, Association for Computing
Machinery, New York, 2020, pp. 435–443.

90 A. Karim, V. Riahi, A. Mishra, M.A.H. Newton, A. Dehzangi, T. Balle, et al.,
Quantitative toxicity prediction via meta ensembling of multitask deep learning
models, ACS Omega 6 (2021) 12306–12317.

91 J.G. Meyer, S. Liu, I.J. Miller, J.J. Coon, A. Gitter, Learning drug functions from
chemical structures with convolutional neural networks and random forests, J
Chem Inf Model 59 (2019) 4438–4449.

92 J.Y. Ryu, M.Y. Lee, J.H. Lee, B.H. Lee, K.S. Oh, DeepHIT: a deep learning
framework for prediction of hERG-induced cardiotoxicity, Bioinformatics 36
(2020) 3049–3055.

93 E.E. Kosasih, J. Cabezas, X. Sumba, P. Bielak, K. Tagowski, K. Idanwekhai, et al.,
On graph neural network ensembles for large-scale molecular property
prediction, arXiv 2021 (2021).

94 J. Busk, P.B. Jørgensen, A. Bhowmik, M.N. Schmidt, O. Winther, T. Vegge,
Calibrated uncertainty for molecular property prediction using ensembles of
message passing neural networks, Mach Learn Sci Technol 3 (2021) 15012.

95 A. Karim, J. Singh, A. Mishra, A. Dehzangi, M.A.H. Newton, A. Sattar, Toxicity
prediction by multimodal deep learning, Lect Notes Comp Sci 11669 (2019)
142–152.

96 Y.K. Chen, S. Shave, M. Auer, MRlogP: transfer learning enables accurate logP
prediction using small experimental training datasets, Processes 9 (2021) 2029.

97 Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L. Imagenet: a large-scale
hierarchical image database. In: 2009 IEEE Conference on Computer Vision and
Pattern Recognition. Piscataway; IEEE; 2009: 248–55.

98 S. Zhong, J. Hu, X. Yu, H. Zhang, Molecular image-convolutional neural network
(CNN) assisted QSAR models for predicting contaminant reactivity toward OH
radicals: transfer learning, data augmentation and model interpretation, Chem
Eng J 408 (2021) 127998.

99 Z. Liu, L. Lin, Q. Jia, Z. Cheng, Y. Jiang, Y. Guo, et al., Transferable multilevel
attention neural network for accurate prediction of quantum chemistry
properties via multitask learning, J Chem Inf Model 61 (2021) 1066–1082.

100 Z. Guo, C. Zhang, W. Yu, J. Herr, O. Wiest, M. Jiang, et al., Few-shot graph
learning for molecular property prediction, arXiv 2021 (2021).

101 Y. Wang, A. Abuduweili, Q. Yao, D. Dou, Property-aware relation networks for
few-shot molecular property prediction, arXiv 2021 (2021).

102 D. Mendez, A. Gaulton, A.P. Bento, J. Chambers, M. De Veij, E. Félix, et al.,
ChEMBL: towards direct deposition of bioassay data, Nucleic Acids Res 47 (2019)
D930–D940.

103 J.J. Irwin, K.G. Tang, J. Young, C. Dandarchuluun, B.R. Wong, M. Khurelbaatar,
et al., ZINC20—a free ultralarge-scale chemical database for ligand discovery, J
Chem Inf Model 60 (2020) 6065–6073.

104 H. Wang, H. Zhao, B. Li, Bridging multi-task learning and meta-learning:
towards efficient training and effective adaptation, Proc Machine Learn Res 139
(2021) 10991–11002.

105 Y. Zhang, P. Ti�no, A. Leonardis, K. Tang, A survey on neural network
interpretability, IEEE Trans Emerg Top Comput Intell 5 (2021) 726–742.

106 J. Jiménez-Luna, F. Grisoni, G. Schneider, Drug discovery with explainable
artificial intelligence, Nat Mach Intell 2 (2020) 573–584.

http://refhub.elsevier.com/S1359-6446(22)00366-X/h0275
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0275
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0275
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0280
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0280
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0280
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0285
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0285
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0285
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0290
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0290
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0295
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0295
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0295
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0300
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0300
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0310
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0310
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0310
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0315
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0315
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0315
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0320
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0320
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0320
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0325
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0325
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0330
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0330
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0330
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0335
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0335
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0335
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0335
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0335
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0345
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0345
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0345
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0350
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0350
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0355
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0355
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0355
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0355
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0360
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0360
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0360
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0360
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0360
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0365
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0365
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0365
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0370
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0370
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0370
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0375
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0375
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0380
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0380
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0385
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0385
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0395
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0395
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0400
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0400
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0400
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0405
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0405
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0405
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0410
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0410
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0415
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0415
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0415
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0420
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0420
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0425
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0425
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0425
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0430
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0430
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0430
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0435
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0435
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0435
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0440
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0440
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0440
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0445
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0445
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0445
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0445
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0450
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0450
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0450
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0455
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0455
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0455
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0460
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0460
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0460
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0465
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0465
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0465
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0470
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0470
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0470
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0475
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0475
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0475
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0480
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0480
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0490
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0490
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0490
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0490
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0495
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0495
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0495
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0500
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0500
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0505
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0505
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0510
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0510
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0510
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0515
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0515
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0515
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0520
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0520
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0520
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0525
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0525
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0525
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0530
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0530


TE
(G
R
EE

N
)

Drug Discovery Today d Volume 27, Number 12 d December 2022 KEYNOTE (GREEN)
107 Pope PE, Kolouri S, Rostami M, Martin CE, Hoffmann H. Explainability methods
for graph convolutional neural networks. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. Piscatawy; IEEE: 2019:
10772–81.

108 J. Jiménez-Luna, M. Skalic, N. Weskamp, G. Schneider, Coloring molecules with
explainable artificial intelligence for preclinical relevance assessment, J Chem
Inf Model 61 (2021) 1083–1094.

109 B. Tang, S.T. Kramer, M. Fang, Y. Qiu, Z. Wu, D. Xu, A self-attention based
message passing neural network for predicting molecular lipophilicity and
aqueous solubility, J Cheminform 12 (2020) 1–9.

110 Z. Wu, D. Jiang, J. Wang, C.Y. Hsieh, D. Cao, T. Hou, Mining toxicity
information from large amounts of toxicity data, J Med Chem 64 (2021) 6924–
6936.

111 S. Ryu, Y. Kwon, W.Y. Kim, A Bayesian graph convolutional network for reliable
prediction of molecular properties with uncertainty quantification, Chem Sci 10
(2019) 8438–8446.
112 L. Hirschfeld, K. Swanson, K. Yang, R. Barzilay, C.W. Coley, Uncertainty
quantification using neural networks for molecular property prediction, J Chem
Inf Model 60 (2020) 3770–3780.

113 S. Wang, M. Jiang, S. Zhang, X. Wang, Q. Yuan, Z. Wei, et al., MCN–CPI:
multiscale convolutional network for compound–protein interaction
prediction, Biomolecules 11 (2021) 1119.

114 S. Zhang, M. Jiang, S. Wang, X. Wang, Z. Wei, Z. Li, SAG-DTA: Prediction of
drug–target affinity using self-attention graph network, Int J Mol Sci 22 (2021)
8993.

115 T. Hasebe, Knowledge-embedded message-passing neural networks: improving
molecular property prediction with human knowledge, ACS Omega 6 (2021)
27955–27967.

116 O. Trott, A.J. Olson, AutoDock Vina: improving the speed and accuracy of
docking with a new scoring function, efficient optimization, and
multithreading, J Comput Chem 31 (2010) 455–461.
K
EY

N
O

www.drugdiscoverytoday.com 13

http://refhub.elsevier.com/S1359-6446(22)00366-X/h0540
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0540
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0540
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0545
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0545
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0545
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0550
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0550
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0550
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0555
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0555
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0555
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0560
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0560
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0560
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0565
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0565
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0565
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0570
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0570
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0570
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0575
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0575
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0575
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0580
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0580
http://refhub.elsevier.com/S1359-6446(22)00366-X/h0580

	atl1
	Introduction
	Sequence-based methods
	Data augmentation methods
	Convolutional neural network models
	Recurrent neural network models
	Substructure learning methods
	Sequence-based self-supervised learning methods

	Graph-based methods
	Spectral GCN models
	Spatial GCN models
	Tree-based methods
	Graph-based self-supervised learning methods

	Image-based methods
	3D Graph-based methods
	3D Grid-based methods
	Hybrid data-based methods and ensemble learning
	Transfer learning, multi-task learning, and meta-learning
	Interpretability of the DL model on molecular property prediction
	Molecular property prediction challenges and future work
	Self-supervised learning methods in 3D data
	Graph convolution methods with experience
	1D, 2D, and 3D data fusion and selection methods
	Meta-learning methods
	The interpretability of DL models

	Concluding remarks
	Declaration of Competing Interest
	Acknowledgment
	References


